Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity.
نویسندگان
چکیده
Considerable evidence supports a Ca(2+) dysregulation hypothesis of brain aging and Alzheimer's disease. However, it is still not known whether (1) intracellular [Ca(2+)](i) is altered in aged brain neurons during synaptically activated neuronal activity; (2) altered [Ca(2+)](i) is directly correlated with impaired neuronal plasticity; or (3) the previously observed age-related increase in L-type voltage-sensitive Ca(2+) channel (L-VSCC) density in hippocampal neurons is sufficient to impair synaptic plasticity. Here, we used confocal microscopy to image [Ca(2+)](i) in single CA1 neurons in hippocampal slices of young-adult and aged rats during repetitive synaptic activation. Simultaneously, we recorded intracellular EPSP frequency facilitation (FF), a form of short-term synaptic plasticity that is impaired with aging and inversely correlated with cognitive function. Resting [Ca(2+)](i) did not differ clearly with age. Greater elevation of somatic [Ca(2+)](i) and greater depression of FF developed in aged neurons during 20 sec trains of 7 Hz synaptic activation, but only if the activation triggered repetitive action potentials for several seconds. Elevated [Ca(2+)](i) and FF also were negatively correlated in individual aged neurons. In addition, the selective L-VSCC agonist Bay K8644 increased the afterhyperpolarization and mimicked the depressive effects of aging on FF in young-adult neurons. Thus, during physiologically relevant firing patterns in aging neurons, postsynaptic Ca(2+) elevation is closely associated with altered neuronal plasticity. Moreover, selectively increasing postsynaptic L-VSCC activity, as occurs in aging, negatively regulated a form of short-term plasticity that enhances synaptic throughput. Together, the results elucidate novel processes that may contribute to impaired cognitive function in aging.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملP13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملN-methyl-D-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons.
Ca2+ influx controls multiple neuronal functions including neurotransmitter release, protein phosphorylation, gene expression, and synaptic plasticity. Brain L-type Ca2+ channels, which contain either alpha 1C or alpha 1D as their pore-forming subunits, are an important source of calcium entry into neurons. Alpha 1C exists in long and short forms, which are differentially phosphorylated, and C-...
متن کاملCalcium-dependent inactivation of the monosynaptic NMDA EPSCs in rat hippocampal neurons in culture.
The effects of increased dendritic calcium concentration ([Ca2+]i) induced by single action potentials on monosynaptic glutamatergic excitatory postsynaptic currents (EPSCs) were studied in cultured rat hippocampal neurons. To investigate the respective roles of pre- and postsynaptic elements in the depolarization-induced NMDAR inactivation, we have performed simultaneous paired whole-cell reco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 24 شماره
صفحات -
تاریخ انتشار 2001